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IDENTIFICATION OF MICROCALCIFICATION IN MAMMOGRAPHIC
IMAGES USING WAVELET AND ARTIFICIAL NEURAL NETWORKS

K. Prabhushetty* & Dr. V. R. Udupi**

This paper takes digital mammograph for scrutiny with the angle of finding the microcalcification in the mammographic
images through the help of artificial neural networks (ANN) and wavelet-based sub band image decomposition. When the
mammographs are digitized the micro calcification present in it will be in the form of high frequency component of the
image matrix. In order to detect it we filter the image using Hessian filter and apply DWT and finding the Skewness and
Kurtosis of the resulting image, before applying the BPN algorithm for diagnosing the cancer. The neural network contains
one input, two hidden and one output layers. The described method has been tested on many mammographic images taken
from the Digital Database for Screening Mammography (DDSM).
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1. INTRODUCTION

Women suffering from Breast cancer have been taken as a
serious concern all around the world, As it directly affects
the next generation to come. Mammography has become a
major field in medical diagnostics as there are one out of
eight women affected by breast cancer. Constant
Mammographic screening programs for women of a
particular age group are taking place worldwide. In the
developing and the developed world breast has become the
major threat for the lives of the women. WHO (World Health
Organization) estimates that nearly 2,00,000 women
worldwide die of breast cancer each year. Breast cancer is
one among the top three cancers in World involving women.
In United States, the American Cancer Society estimates
that, 215 990 new cases of breast cancer has been diagnosed.
It is the leading cause of death due to cancer in women under
the age of 65. In India, breast cancer accounts for 23% of
all the female cancers followed by cervical cancers (17.5%)
in metropolitan cities such as Mumbai, Calcutta, and
Bangalore [1]. For detecting the Breast cancer a high quality
image is required. Clinicians who diagnose the
microcalcification must be trained very well in order to attain
the correct diagnosis. Detected Macro-calcifications will be
often benign (not cancer).

The benign Micro-calcification will be large and round
in the mammograph. Smaller and more numerous than the
larger macro-calcifications will also be present as a
microcalcification. They seldom will be detected as the
cancer complaint. The radiologist will look at the size, shape
and distribution of the micro-calcifications to see if they

are suspicious. An ultrasound study and a biopsy and lot of
mammograms may be necessary. Suspicious micro-
calcifications turn out to be cancer about 20 to 25 percent
of the time.

It is very hard to diagnose whether it is a cancer or not.
They are called Indeterminate. When this happens the
clinicians may take more X-rays to help decide if the micro-
calcifications are benign, probably benign, suspicious, or
malignant. If they are probably benign, then there is a 98
percent chance that they are not cancer. However, if they
are suspicious, more follow-up is needed.

2. IMPLEMENTATION

Mammographic image is initially made to be convoluted
with the Hessian matrix to smoothen and filter it. The filtered
images are more bound to have higher detection ratio than
the one without filtering [1].

Hessian matrix is a gradient method of filtering the
image. The Hessian matrix is the square matrix of
second-order partial derivatives of a function; that is, it
describes the local curvature of a function of many
variables. The Hessian matrix was developed in the 19th
century by the German mathematician Ludwig Otto
Hesse and later named after him. Hesse himself had used
the term “functional determinants”.

Given the real-valued function
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If all second partial derivatives of f exist, then the
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3. CLASSIFICATION

Skewness: Skewness, the third standardized moment, is
written as γ

1
 and defined as γ
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/σ3 where µ

3
 is the third

moment about the mean and σ is the standard deviation.
Equivalently, skewness can be defined as the ratio of the
third cumulate κ

3
 and the third power of the square root of

the second cumulant. This is analogous to the definition of
kurtosis, which is expressed as the fourth cumulant divided
by the fourth power of the square root of the second
cumulant.

For a sample of n values the sample skewness is
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where X
i
 is the ith value, X is the sample mean, m

3
 is the

sample third central moment, and m
2
 is the sample variance.

Given samples from a population, the equation for the
sample skewness g

1
 above is a biased estimator of the

population skewness. The usual estimator of skewness is
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where k
3
 is the unique symmetric unbiased estimator of the

third cumulant and k
2
 is the symmetric unbiased estimator

of the second cumulant. Unfortunately G
1
 is, nevertheless,

generally biased. Its expected value can even have the
opposite sign from the true skewness.

The skewness of a random variable X is sometimes
denoted Skew [X]. If Y is the sum of n independent random
variables, all with the same distribution as X, then it can be
shown that Skew [Y] = Skew [X] / √n.

Skewness has benefits in many areas. Many simplistic
models assume normal distribution i.e. data is symmetric
about the mean. The normal distribution has a skewness of
zero. But in reality, data points are not perfectly symmetric.
So, an understanding of the skewness of the dataset indicates
whether deviations from the mean are going to be positive
or negative.

KURTOSIS

Kurtosis, The fourth standardized moment is defined as

4
4

µ
σ

where µ
4
 is the fourth moment about the mean and σ is the

standard deviation. This is sometimes used as the definition
of kurtosis in older works, but is not the definition used
here.

Kurtosis is more commonly defined as the fourth
cumulate divided by the square of the variance of the
probability distribution,
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which is known as excess kurtosis. The “minus 3” at the
end of this formula is often explained as a correction to make
the kurtosis of the normal distribution equal to zero. Another
reason can be seen by looking at the formula for the kurtosis
of the sum of random variables. Because of the use of the
cumulant, if Y is the sum of n independent random variables,

are used in large-scale optimization problems within
Newton-type methods because they are the coefficient of
the quadratic term of a local Taylor expansion of a function.
That is,

Y = f(x + ∆x) ~f(x) + J(x)∆x + 1/2∆xTH(x)∆x (3)

where J is the Jacobian matrix, which is a vector (the
gradient) for scalar-valued functions. The full Hessian matrix
can be difficult to compute in practice; in such situations,
quasi-Newton algorithms have been developed that use
approximations to the Hessian. The most well-known quasi-
Newton algorithm is the BFGS algorithm.

MICROCALCIFICATION DETECTION
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all with the same distribution as X, then Kurt [Y] = Kurt [X] /
n, while the formula would be more complicated if kurtosis
were defined as µ

4
 / σ4.

More generally, if X
1
, ..., X

n
 are independent random

variables all having the same variance, then
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Whereas this identity would not hold if the definition
did not include the subtraction of 3. The fourth standardized
moment must be at least 1, so the excess kurtosis must be
–2 or more; there is no upper limit and it may be infinite.

Back Propogation Algorithm

The back propagation algorithm is similar to the steepest
descent algorithm with the difference that the step length µ
is kept fixed during the training. Hence the back propagation
algorithm is obtained by choosing R = I in the parameter.
The step length is set with the option Step Length, which
has default = 0.1.

The training algorithm in may be augmented by using
a momentum parameter, which may be set with the
Momentum option. Note that the default value of momentum
parameter is 0. The idea of using momentum is motivated
by the need to escape from local minima, which may be
effective in certain problems. In general, however, the
recommendation is to use one of the other, better, training
algorithms and repeat the training a couple of times from
different initial parameter initializations. The simulation is
carried out by using the following conditions.

1) Test mammogram images were obtained by
scanned as raw format with 8-bit grayscale and
256 × 256 pixels size. These mammograms have
been chosen by the radiologist and suspected as
mammograms with micro calcification. In this
simulation, 30 variation of image as part of 18
digitized mammograms is used.

2) The chosen wavelet basis function is the
Daubechies with four coefficients as a filter
banks. These processes were applied without
2-factor down sampling from wavelet transforms
coefficients. It’s used to reduce lost information
and maintain size of images.

3) Global image enhancement procedure was applied
only on 4-level decomposed detail sub band image
(high pass components) using multiscale adaptive
gain method. In this technique, high pass
components will be suppressed if it’s value less
than the threshold and will be increased if it’s
greater than threshold. Finally the back propagation
algorithm was used to classify the image as either
benign or malign.

6. CONCLUSION

The regions of clustered microcalcification can be detected
and the presence another location of clustered
microcalcification could be considered to clarify the
diagnoses. In order to test the detection method, we used
the visual analysis to detect presence microcalcification in
mammograms based on comparison between the result
images and the original ones. The result of test images shown
effectiveness simulation on microcalcification detection,
even there are some result could not detect the clustered
microcalcification. Fail of detection process will reduce the
calculation of Simulation effectiveness. From the 50 test

5. RESULTS AND DISCUSSION

The described method has been tested on many
mammographic images taken from the Digital Database for
Screening Mammography (DDSM). The primary purpose
of this database is to facilitate a sound research in the
development of computer algorithms to aid in screening.

In particular, all the microcalcifications identified by
the specialists in the database (many of them classified with
a very high subtlety rating) have been correctly enhanced
by the algorithm without the introduction of any artifact,
allowing a more simple detection by the radiologist with
respect to the plain image or the image processed by standard
algorithms.

Figure 1: Shows the Region of Interest (ROI) of an Original
Dense Mammographic Image with a Microcalcification Lesion

Figure 2: Shows the Wavelet Transformed Image
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images, there were the 48 test images result a good detection
process and just two images failed. Additionally the
processing is simple and does not require a full
decomposition and reconstruction.
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